In this study, we consider simulation-based worst-case optimization problems with continuous design variables and a finite scenario set. To reduce the number of simulations required and increase the number of restarts for better local optimum solutions, we propose a new approach referred to as adaptive scenario subset selection (AS3). The proposed approach subsamples a scenario subset as a support to construct the worst-case function in a given neighborhood, and we introduce such a scenario subset. Moreover, we develop a new optimization algorithm by combining AS3 and the covariance matrix adaptation evolution strategy (CMA-ES), denoted AS3-CMA-ES. At each algorithmic iteration, a subset of support scenarios is selected, and CMA-ES attempts to optimize the worst-case objective computed only through a subset of the scenarios. The proposed algorithm reduces the number of simulations required by executing simulations on only a scenario subset, rather than on all scenarios. In numerical experiments, we verified that AS3-CMA-ES is more efficient in terms of the number of simulations than the brute-force approach and a surrogate-assisted approach lq-CMA-ES when the ratio of the number of support scenarios to the total number of scenarios is relatively small. In addition, the usefulness of AS3-CMA-ES was evaluated for well placement optimization for carbon dioxide capture and storage (CCS). In comparison with the brute-force approach and lq-CMA-ES, AS3-CMA-ES was able to find better solutions because of more frequent restarts.
translated by 谷歌翻译
In the field of reinforcement learning, because of the high cost and risk of policy training in the real world, policies are trained in a simulation environment and transferred to the corresponding real-world environment. However, the simulation environment does not perfectly mimic the real-world environment, lead to model misspecification. Multiple studies report significant deterioration of policy performance in a real-world environment. In this study, we focus on scenarios involving a simulation environment with uncertainty parameters and the set of their possible values, called the uncertainty parameter set. The aim is to optimize the worst-case performance on the uncertainty parameter set to guarantee the performance in the corresponding real-world environment. To obtain a policy for the optimization, we propose an off-policy actor-critic approach called the Max-Min Twin Delayed Deep Deterministic Policy Gradient algorithm (M2TD3), which solves a max-min optimization problem using a simultaneous gradient ascent descent approach. Experiments in multi-joint dynamics with contact (MuJoCo) environments show that the proposed method exhibited a worst-case performance superior to several baseline approaches.
translated by 谷歌翻译
进化策略(ES)是黑框连续优化的有前途的算法类别之一。尽管在应用方面取得了广泛的成功,但对其收敛速度的理论分析在凸二次函数及其单调转换方面受到限制。%从理论上讲,它在凸功能上的收敛速度速度仍然很模糊。在这项研究中,(1+1)-ES在本地$ l $ -l $ -lipschitz连续梯度上的上限和下限(1+1)-ES的线性收敛速率被推导为$ \ exp \左( - \ omega_ {d \ to \ infty} \ left(\ frac {l} {d \ cdot u} \ right)\ right)\ right)$ and $ \ exp \ left( - \ frac1d \ right)$。值得注意的是,对目标函数的数学特性(例如Lipschitz常数)的任何先验知识均未给出算法,而现有的无衍生化优化算法的现有分析则需要它们。
translated by 谷歌翻译
在多类分类模型的现实应用应用中,重要类中的错误分类(例如停止符号)可能比其他类别(例如速度限制)更有危害。在本文中,我们提出了一个损失函数,可以改善重要类别的回忆,同时使用跨透镜损失保持与情况相同的准确性。出于我们的目的,我们需要比其他班级更好地分离重要班级。但是,现有的方法对跨凝性损失造成较敏感的惩罚并不能改善分离。另一方面,给出特征向量与与每个特征相对应的最后一个完全连接层的重量向量之间的角度的方法可以改善分离。因此,我们提出了一个损失函数,可以通过仅设置重要类别的边缘来改善重要类别的分离,即称为类敏感的添加性角度损失(CAMRI损失)。预计CAMRI的损失将减少重要类的特征和权重之间的角度方差相对于其他类别,这是由于特征空间中重要类周围的边缘通过为角度增加惩罚而在特征空间中的边缘。此外,仅将惩罚集中在重要类别上几乎不会牺牲其他阶级的分离。在CIFAR-10,GTSRB和AWA2上进行的实验表明,所提出的方法可以在不牺牲准确性的情况下改善跨透镜损失的召回率提高了9%。
translated by 谷歌翻译
我们调查了在线性模型下采用人口统计学作为公平限制的线性模型下公平回归问题的最小误差。作为一种可拖动的人口统计学限制,我们介绍$(\ alpha,\ delta)$ - 公平性一致性,这意味着量化的不公平最多减少了$ n^{ - \ alpha} $,至少具有概率$ 1- \ delta $,其中$ n $是样本量。换句话说,始终如一的公平算法最终会输出回归器,因为$ n $倾向于无限,满足人口统计奇偶校验约束。由于我们的分析,我们发现$(\ alpha,\ delta)$ - 公平性一致性约束为$ \ theta(\ frac {dm} {n})$下的最小值最佳错误。le \ frac {1} {2} $,其中$ d $是维度,$ m $是从敏感属性引起的组数。这是第一项研究,揭示了线性模型下公平回归问题的最小值最佳性。
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译
In recent years, arbitrary image style transfer has attracted more and more attention. Given a pair of content and style images, a stylized one is hoped that retains the content from the former while catching style patterns from the latter. However, it is difficult to simultaneously keep well the trade-off between the content details and the style features. To stylize the image with sufficient style patterns, the content details may be damaged and sometimes the objects of images can not be distinguished clearly. For this reason, we present a new transformer-based method named STT for image style transfer and an edge loss which can enhance the content details apparently to avoid generating blurred results for excessive rendering on style features. Qualitative and quantitative experiments demonstrate that STT achieves comparable performance to state-of-the-art image style transfer methods while alleviating the content leak problem.
translated by 谷歌翻译
Domain adaptation methods reduce domain shift typically by learning domain-invariant features. Most existing methods are built on distribution matching, e.g., adversarial domain adaptation, which tends to corrupt feature discriminability. In this paper, we propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure. It's motivated by the observation that as the model is trained to be progressively discriminative, features of different categories expand outwards in different directions, forming a radial structure. We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously. Specifically, we represent each domain with a global anchor and each category a local anchor to form a radial structure and reduce domain shift via structure matching. It consists of two parts, namely isometric transformation to align the structure globally and local refinement to match each category. To enhance the discriminability of the structure, we further encourage samples to cluster close to the corresponding local anchors based on optimal-transport assignment. Extensively experimenting on multiple benchmarks, our method is shown to consistently outperforms state-of-the-art approaches on varied tasks, including the typical unsupervised domain adaptation, multi-source domain adaptation, domain-agnostic learning, and domain generalization.
translated by 谷歌翻译
This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object segmentation and generate realistic composite images without manual annotations. We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net based discriminator. The proposed method extends the ability of the standard discriminators to learn not only the global data representations via classification (real/fake) but also learn semantic and structural information through pseudo labels created using the self-supervised task. The proposed method empowers the generator to create meaningful masks by forcing it to learn informative per-pixel as well as global image feedback from the discriminator. Our experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on the standard benchmark datasets.
translated by 谷歌翻译